Collaboration-based Social Tag Prediction in the Graph of Annotated Web Pages

نویسندگان

  • Hossein Rahmani
  • Behrooz Nobakht
  • Hendrik Blockeel
چکیده

Different approaches based on content or tag information have been proposed to address the problem of tag recommendation for a web page. In this paper, we analyze two approaches in a graph of web pages. Each node is a web page and edges represent hyperlinks. The first approach uses the content while the second one uses tag information in the graph. The second approach makes two assumptions about the tag set of two interacting nodes. The Tag Similarity Assumption claims that two interacting nodes discuss about rather similar topics; therefore, the chance of having more similar tag set is higher. The Tag Collaboration Assumption says that two interacting nodes complement each others topics. We apply algorithms such as Self Organizing Map (SOM), Reinforcement Learning (RL) and K-means clustering to compare methods on several datasets. We conclude that tag-based tag predictors outperform their content-based peers by more than ten percent with respect to the cosine similarity between predicted and actual tag sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expert Discovery: A web mining approach

Expert discovery is a quest in search of finding an answer to a question: “Who is the best expert of a specific subject in a particular domain within peculiar array of parameters?” Expert with domain knowledge in any field is crucial for consulting in industry, academia and scientific community. Aim of this study is to address the issues for expert-finding task in real-world community. Collabor...

متن کامل

Visualizing Multiple System Atrophy Studies Based on Collaboration Network and Centrality Indices in Web of Science Database

Introduction: Social network analysis is an analytical method based on graph theories that identifies relationships between individuals or factors to analyze the social structures resulted from those relationships. The objective of this study was to analyze co-authorship and co-word networks based on scientometric indicators and centrality measures in the studies on multiple atrophy system dise...

متن کامل

Trend Prediction in Social Bookmark Service Using Time Series of Bookmarks

Social bookmark service is a web-based service which enables its users to manage and share their bookmarks on Web pages. Many bookmarks are aggregated and shared on social bookmarks, so they become useful news sources now. In this paper, we propose a trend prediction method of newly-posted pages, using time sequential data of users and “tags” annotated to bookmarks.

متن کامل

Visualizing Multiple System Atrophy Studies Based on Collaboration Network and Centrality Indices in Web of Science Database

Introduction: Social network analysis is an analytical method based on graph theories that identifies relationships between individuals or factors to analyze the social structures resulted from those relationships. The objective of this study was to analyze co-authorship and co-word networks based on scientometric indicators and centrality measures in the studies on multiple atrophy system dise...

متن کامل

One-Class SVMs for Personalized Tag-based Resource Classification in Social Bookmarking Systems

Social tagging systems allow users to easily create, organize and share collections of Web resources in a collaborative fashion. Videos, pictures, research papers and Web pages are shared and annotated in sites such as Del.icio.us, CiteULike or Flickr, among others. The rising popularity of these systems leads to a constant increase in the number of users actively publishing and annotating reso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010